Can Patient-Reported Outcomes Measurement Information System® (PROMIS) measures accurately enhance understanding of acceptable symptoms and functioning in primary care?

Author:

Jacobson Ryan P.ORCID,Kang Daniel,Houck Jeff

Abstract

Abstract Background Value-based healthcare models will require prioritization of the patient’s voice in their own care toward better outcomes. The Patient-Reported Outcomes Measurement Information System® (PROMIS) gives patients a voice and leads providers to actionable treatments across a broad range of diagnoses. However, better interpretation of PROMIS measures is needed. The purpose of this study was to evaluate the accuracy of PROMIS Physical Function (PF), Self-Efficacy for Managing Symptoms (SE), Pain Interference (PI), Fatigue, and Depression measures to discriminate patient acceptable symptom state (PASS) in primary care, determining if that accuracy is stable over time and/or retained when PROMIS score thresholds are set at either ½ or 1 SD worse than the reference population mean. Methods Primary care patients completed the five PROMIS measures and answered the PASS yes/no question at intake (n = 360), 3–14 days follow-up (n = 230), and 45–60 days follow-up (n = 227). Thresholds (optimal, ½ SD, and 1 SD worse than reference values) for PROMIS T-scores associated with PASS were determined through receiver-operator curve analysis. Accuracy was calculated at the three time points for each threshold value. Logistic regression analyses were used to determine combinations of PROMIS measures that best predicted PASS. Results PROMIS PF, SE, PI, and Fatigue optimal score thresholds (maximizing sensitivity and specificity) yielded area under the curve values of 0.77–0.85, with accuracies ranging from 71.7% to 79.1%. Accuracy increased minimally (1.9% to 5.5%) from intake to follow-ups. Thresholds of 1 SD worse than the mean for PROMIS PF and PI measures and ½ SD worse for SE and Fatigue overall retained accuracy versus optimal (+ 1.3% to − 3.6%). Regression models retained SE, PI, and Fatigue as independent predictors of PASS, and minimally increased accuracy to 83.1?%. Conclusions This study establishes actionable PROMIS score thresholds that are stable over time and anchored to patient self-reported health status, increasing interpretability of PF, SE, PI, and Fatigue scores. The findings support the use of these PROMIS measures in primary care toward improving provider-patient communication, prioritizing patient concerns, and optimizing clinical decision making.

Publisher

Springer Science and Business Media LLC

Subject

Health Information Management,Health Informatics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3