Abstract
Abstract
Objectives
With ever increasingly complex healthcare settings, technology enhanced simulation (TES) is well positioned to explore all perspectives to enhance patient safety and patient outcomes. Analysis from a Safety-II stance requires identification of human adjustments in daily work that are key to maintaining safety. The aim of this paper is to describe an approach to explore the consequences of human variability from a Safety-II perspective and describe the added value of this to TES.
Methods
The reader is guided through a novel application of functional resonance analysis methodology (FRAM), a method to analyse how a system or activity is affected by human variability, to explore human adaptations observed in in situ simulations (ISS). The structured applicability of this novel approach to TES is described by application to empirical data from the standardised ISS management of paediatric time critical head injuries (TCHI).
Results
A case series is presented to illustrate the step-wise observation of key timings during ISSs, the construction of FRAM models and the visualisation of the propagation of human adaptations through the FRAM models. The key functions/actions that ensure the propagation are visible, as are the sequelae of the adaptations.
Conclusions
The approach as described in this paper is a first step to illuminating how to explore, analyse and observe the consequences of positive and negative human adaptations within simulated complex systems. This provides TES with a structured methodology to visualise and reflect upon both Safety-I and Safety-II perspectives to enhance patient safety and patient outcomes.
Publisher
Springer Science and Business Media LLC
Reference30 articles.
1. Kolb DA. Experiential Learning : Experience as the Source of Learning and Development. Englewood Cliffs, NJ: Prentice-Hall.; 1984.
2. Rosen AM, Hunt AE, Pronovost JP, Federowicz AM, Weaver JS. In Situ Simulation in Continuing Education for the Health Care Professions: A Systematic Review. J Contin Educ Health Prof. 2012;32:243–54.
3. Gaba DM, Howard SK, Fish KJ, Smith BE, Sowb YA. Simulation-Based Training in Anesthesia Crisis Resource Management (ACRM): A Decade of Experience. Simul. Gaming. 2001;32:175–93.
4. Hollnagel E. Coping with complexity: past, present and future. Cogn Technol Work. 2012;14:199–205.
5. Flach J. Complexity: learning to muddle through. Cogn Technol Work. 2012;14:187–97.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献