Data-driven resuscitation training using pose estimation

Author:

Weiss Kerrin E.ORCID,Kolbe Michaela,Nef Andrina,Grande Bastian,Kalirajan Bravin,Meboldt Mirko,Lohmeyer Quentin

Abstract

Abstract Background Cardiopulmonary resuscitation (CPR) training improves CPR skills while heavily relying on feedback. The quality of feedback can vary between experts, indicating a need for data-driven feedback to support experts. The goal of this study was to investigate pose estimation, a motion detection technology, to assess individual and team CPR quality with the arm angle and chest-to-chest distance metrics. Methods After mandatory basic life support training, 91 healthcare providers performed a simulated CPR scenario in teams. Their behaviour was simultaneously rated based on pose estimation and by experts. It was assessed if the arm was straight at the elbow, by calculating the mean arm angle, and how close the distance between the team members was during chest compressions, by calculating the chest-to-chest distance. Both pose estimation metrics were compared with the expert ratings. Results The data-driven and expert-based ratings for the arm angle differed by 77.3%, and based on pose estimation, 13.2% of participants kept the arm straight. The chest-to-chest distance ratings by expert and by pose estimation differed by 20.7% and based on pose estimation 63.2% of participants were closer than 1 m to the team member performing compressions. Conclusions Pose estimation-based metrics assessed learners’ arm angles in more detail and their chest-to-chest distance comparably to expert ratings. Pose estimation metrics can complement educators with additional objective detail and allow them to focus on other aspects of the simulated CPR training, increasing the training’s success and the participants’ CPR quality. Trial registration Not applicable.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Swiss Federal Institute of Technology Zurich

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3