Detection and Evaluation for High-Quality Cardiopulmonary Resuscitation Based on a Three-Dimensional Motion Capture System: A Feasibility Study

Author:

Tang Xingyi1ORCID,Wang Yan1ORCID,Ma Haoming1,Wang Aoqi1,Zhou You1ORCID,Li Sijia1,Pei Runyuan1ORCID,Cui Hongzhen2ORCID,Peng Yunfeng2,Piao Meihua1

Affiliation:

1. School of Nursing, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100144, China

2. School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, China

Abstract

High-quality cardiopulmonary resuscitation (CPR) and training are important for successful revival during out-of-hospital cardiac arrest (OHCA). However, existing training faces challenges in quantifying each aspect. This study aimed to explore the possibility of using a three-dimensional motion capture system to accurately and effectively assess CPR operations, particularly about the non-quantified arm postures, and analyze the relationship among them to guide students to improve their performance. We used a motion capture system (Mars series, Nokov, China) to collect compression data about five cycles, recording dynamic data of each marker point in three-dimensional space following time and calculating depth and arm angles. Most unstably deviated to some extent from the standard, especially for the untrained students. Five data sets for each parameter per individual all revealed statistically significant differences (p < 0.05). The correlation between Angle 1′ and Angle 2′ for trained (rs = 0.203, p < 0.05) and untrained students (rs = −0.581, p < 0.01) showed a difference. Their performance still needed improvement. When conducting assessments, we should focus on not only the overall performance but also each compression. This study provides a new perspective for quantifying compression parameters, and future efforts should continue to incorporate new parameters and analyze the relationship among them.

Funder

Non-Profit Central Research Institute Fund of Chinese Academy of Medical Sciences

Peking Union Medical College 2023 Medical Education Scholar Program

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3