Design of an interface for teaching cardiovascular physiology to anesthesia clinicians with a patient simulator connected to a minimally invasive cardiac output monitor (LiDCO rapid®)

Author:

Chaló DanielaORCID,Marques Joana,Mendes Henrique,Sancho Consuelo

Abstract

AbstractCardiovascular physiology can be simulated in patient simulators but is limited to the simulator monitor curves and parameters, missing some important data that today is known as essential to fluid management and therapeutic decision in critical ill and high-risk surgical patients. Our main objective was to project and implement a unidirectional communication channel between a pre-existing patient simulator and a minimally invasive cardiac output monitor (LiDCO rapid®); a monitor that connects to real patients and interprets the arterial wave. To connect the patient simulator to the hemodynamic monitor, firstly, we had to assess both systems and design a communication channel between them. LiDCO monitor accepts as an input an analog voltage varying between 0 V and 5 V and that every volt is directly proportional to a blood pressure (mmHg) value ranging from 0 mmHg (0 V) to 500 mmHg (5 V). A Raspberry Pi 0 (Rpi0) with a WIFI chip integrated was needed and added to a digital analogue converter connected to the board. We designed a system that allowed us to collect, interpret and modify data, and feed it to the LiDCO rapid® monitor. We had developed a Python® script with three independent threads and a circular buffer to handle the data transmission between both systems. The LiDCO hemodynamic monitor successfully received data sent from our setup like a real patient arterial wave pulse and interpreted it to estimate several hemodynamic parameters, as cardiac output, stroke volume, systemic vascular resistance, pulse pressure variation, and stroke volume variation. The connection between the patient simulator and the LiDCO monitor is being used to create arterial curves and other hemodynamic parameters for clinical scenarios where residents and anesthesiologists can simulate a variety of unstable hemodynamic conditions, preparing them to face similar situations with real patients in a safe environment and with their own monitors.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3