Author:
Weissman Jake L.,Dogra Sonia,Javadi Keyan,Bolten Samantha,Flint Rachel,Davati Cyrus,Beattie Jess,Dixit Keshav,Peesay Tejasvi,Awan Shehar,Thielen Peter,Breitwieser Florian,Johnson Philip L. F.,Karig David,Fagan William F.,Bewick Sharon
Abstract
Abstract
Background
Even when microbial communities vary wildly in their taxonomic composition, their functional composition is often surprisingly stable. This suggests that a functional perspective could provide much deeper insight into the principles governing microbiome assembly. Much work to date analyzing the functional composition of microbial communities, however, relies heavily on inference from genomic features. Unfortunately, output from these methods can be hard to interpret and often suffers from relatively high error rates.
Results
We built and analyzed a domain-specific microbial trait database from known microbe-trait pairs recorded in the literature to better understand the functional composition of the human microbiome. Using a combination of phylogentically conscious machine learning tools and a network science approach, we were able to link particular traits to areas of the human body, discover traits that determine the range of body areas a microbe can inhabit, and uncover drivers of metabolic breadth.
Conclusions
Domain-specific trait databases are an effective compromise between noisy methods to infer complex traits from genomic data and exhaustive, expensive attempts at database curation from the literature that do not focus on any one subset of taxa. They provide an accurate account of microbial traits and, by limiting the number of taxa considered, are feasible to build within a reasonable time-frame. We present a database specific for the human microbiome, in the hopes that this will prove useful for research into the functional composition of human-associated microbial communities.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献