Biomedical relation extraction via knowledge-enhanced reading comprehension

Author:

Chen Jing,Hu Baotian,Peng Weihua,Chen QingcaiORCID,Tang Buzhou

Abstract

Abstract Background In biomedical research, chemical and disease relation extraction from unstructured biomedical literature is an essential task. Effective context understanding and knowledge integration are two main research problems in this task. Most work of relation extraction focuses on classification for entity mention pairs. Inspired by the effectiveness of machine reading comprehension (RC) in the respect of context understanding, solving biomedical relation extraction with the RC framework at both intra-sentential and inter-sentential levels is a new topic worthy to be explored. Except for the unstructured biomedical text, many structured knowledge bases (KBs) provide valuable guidance for biomedical relation extraction. Utilizing knowledge in the RC framework is also worthy to be investigated. We propose a knowledge-enhanced reading comprehension (KRC) framework to leverage reading comprehension and prior knowledge for biomedical relation extraction. First, we generate questions for each relation, which reformulates the relation extraction task to a question answering task. Second, based on the RC framework, we integrate knowledge representation through an efficient knowledge-enhanced attention interaction mechanism to guide the biomedical relation extraction. Results The proposed model was evaluated on the BioCreative V CDR dataset and CHR dataset. Experiments show that our model achieved a competitive document-level F1 of 71.18% and 93.3%, respectively, compared with other methods. Conclusion Result analysis reveals that open-domain reading comprehension data and knowledge representation can help improve biomedical relation extraction in our proposed KRC framework. Our work can encourage more research on bridging reading comprehension and biomedical relation extraction and promote the biomedical relation extraction.

Funder

Natural Science Foundation of China

Special Foundation for Technology Research Program of Guangdong Province

Strategic Emerging Industry Development Special Funds of Shenzhen

The foundation of the joint project with Beijing Baidu Netcom Science Technology Co., Ltd

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3