MetaTron: advancing biomedical annotation empowering relation annotation and collaboration

Author:

Irrera Ornella,Marchesin Stefano,Silvello Gianmaria

Abstract

Abstract Background The constant growth of biomedical data is accompanied by the need for new methodologies to effectively and efficiently extract machine-readable knowledge for training and testing purposes. A crucial aspect in this regard is creating large, often manually or semi-manually, annotated corpora vital for developing effective and efficient methods for tasks like relation extraction, topic recognition, and entity linking. However, manual annotation is expensive and time-consuming especially if not assisted by interactive, intuitive, and collaborative computer-aided tools. To support healthcare experts in the annotation process and foster annotated corpora creation, we present MetaTron. MetaTron is an open-source and free-to-use web-based annotation tool to annotate biomedical data interactively and collaboratively; it supports both mention-level and document-level annotations also integrating automatic built-in predictions. Moreover, MetaTron enables relation annotation with the support of ontologies, functionalities often overlooked by off-the-shelf annotation tools. Results We conducted a qualitative analysis to compare MetaTron with a set of manual annotation tools including TeamTat, INCEpTION, LightTag, MedTAG, and brat, on three sets of criteria: technical, data, and functional. A quantitative evaluation allowed us to assess MetaTron performances in terms of time and number of clicks to annotate a set of documents. The results indicated that MetaTron fulfills almost all the selected criteria and achieves the best performances. Conclusions MetaTron stands out as one of the few annotation tools targeting the biomedical domain supporting the annotation of relations, and fully customizable with documents in several formats—PDF included, as well as abstracts retrieved from PubMed, Semantic Scholar, and OpenAIRE. To meet any user need, we released MetaTron both as an online instance and as a Docker image locally deployable.

Funder

Horizon 2020 Framework Programme

Università degli Studi di Padova

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3