Compressed sensing improved iterative reconstruction-reprojection algorithm for electron tomography

Author:

Li Lun,Han Renmin,Zhang Zhaotian,Guo Tiande,Liu Zhiyong,Zhang FaORCID

Abstract

Abstract Background Electron tomography (ET) is an important technique for the study of complex biological structures and their functions. Electron tomography reconstructs the interior of a three-dimensional object from its projections at different orientations. However, due to the instrument limitation, the angular tilt range of the projections is limited within +70 to −70. The missing angle range is known as the missing wedge and will cause artifacts. Results In this paper, we proposed a novel algorithm, compressed sensing improved iterative reconstruction-reprojection (CSIIRR), which follows the schedule of improved iterative reconstruction-reprojection but further considers the sparsity of the biological ultra-structural content in specimen. The proposed algorithm keeps both the merits of the improved iterative reconstruction-reprojection (IIRR) and compressed sensing, resulting in an estimation of the electron tomography with faster execution speed and better reconstruction result. A comprehensive experiment has been carried out, in which CSIIRR was challenged on both simulated and real-world datasets as well as compared with a number of classical methods. The experimental results prove the effectiveness and efficiency of CSIIRR, and further show its advantages over the other methods. Conclusions The proposed algorithm has an obvious advance in the suppression of missing wedge effects and the restoration of missing information, which provides an option to the structural biologist for clear and accurate tomographic reconstruction.

Funder

National Key Research and Development Program of China

Strategic Priority Research Program of the Chinese Academy of Sciences Grant

Natural Science Foundation of China projects Grant

Beijing Municipal Natural Science Foundation Grant

Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3