Abstract
Abstract
Background
Electron tomography (ET) is an important technique for the study of complex biological structures and their functions. Electron tomography reconstructs the interior of a three-dimensional object from its projections at different orientations. However, due to the instrument limitation, the angular tilt range of the projections is limited within +70∘ to −70∘. The missing angle range is known as the missing wedge and will cause artifacts.
Results
In this paper, we proposed a novel algorithm, compressed sensing improved iterative reconstruction-reprojection (CSIIRR), which follows the schedule of improved iterative reconstruction-reprojection but further considers the sparsity of the biological ultra-structural content in specimen. The proposed algorithm keeps both the merits of the improved iterative reconstruction-reprojection (IIRR) and compressed sensing, resulting in an estimation of the electron tomography with faster execution speed and better reconstruction result. A comprehensive experiment has been carried out, in which CSIIRR was challenged on both simulated and real-world datasets as well as compared with a number of classical methods. The experimental results prove the effectiveness and efficiency of CSIIRR, and further show its advantages over the other methods.
Conclusions
The proposed algorithm has an obvious advance in the suppression of missing wedge effects and the restoration of missing information, which provides an option to the structural biologist for clear and accurate tomographic reconstruction.
Funder
National Key Research and Development Program of China
Strategic Priority Research Program of the Chinese Academy of Sciences Grant
Natural Science Foundation of China projects Grant
Beijing Municipal Natural Science Foundation Grant
Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献