Abstract
Tomography imaging methods at synchrotron light sources keep evolving, pushing multi-modal characterization capabilities at high spatial and temporal resolutions. To achieve this goal, small probe size and multi-dimensional scanning schemes are utilized more often in the beamlines, leading to rising complexities and challenges in the experimental setup process. To avoid spending a significant amount of human effort and beam time on aligning the X-ray probe, sample and detector for data acquisition, most attention has been drawn to realigning the systems at the data processing stages. However, post-processing cannot correct everything, and is not time efficient. Here we present automatic alignment schemes of the rotational axis and sample pre- and during the data acquisition process using a software approach which combines the advantages of genetic algorithms and human intelligence. Our approach shows excellent sub-pixel alignment efficiency for both tasks in a short time, and therefore holds great potential for application in the data acquisition systems of future scanning tomography experiments.
Funder
Chinese Academy of Sciences
National Science Foundation for Young Scientists of China
Hefei Science Center, Chinese Academy of Sciences
Chinese Academy of Sciences, Institute of High Energy Physics
Publisher
International Union of Crystallography (IUCr)
Subject
Instrumentation,Nuclear and High Energy Physics,Radiation
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献