HEC-ASD: a hybrid ensemble-based classification model for predicting autism spectrum disorder disease genes

Author:

Ismail Eman,Gad Walaa,Hashem Mohamed

Abstract

Abstract Purpose Autism spectrum disorder (ASD) is the most prevalent disease today. The causes of its infection may be attributed to genetic causes by 80% and environmental causes by 20%. In spite of this, the majority of the current research is concerned with environmental causes, and the least proportion with the genetic causes of the disease. Autism is a complex disease, which makes it difficult to identify the genes that cause the disease. Methods Hybrid ensemble-based classification (HEC-ASD) model for predicting ASD genes using gradient boosting machines is proposed. The proposed model utilizes gene ontology (GO) to construct a gene functional similarity matrix using hybrid gene similarity (HGS) method. HGS measures the semantic similarity between genes effectively. It combines the graph-based method, such as Wang method with the number of directed children’s nodes of gene term from GO. Moreover, an ensemble gradient boosting classifier is adapted to enhance the prediction of genes forming a robust classification model. Results The proposed model is evaluated using the Simons Foundation Autism Research Initiative (SFARI) gene database. The experimental results are promising as they improve the classification performance for predicting ASD genes. The results are compared with other approaches that used gene regulatory network (GRN), protein to protein interaction network (PPI), or GO. The HEC-ASD model reaches the highest prediction accuracy of 0.88% using ensemble learning classifiers. Conclusion The proposed model demonstrates that ensemble learning technique using gradient boosting is effective in predicting autism spectrum disorder genes. Moreover, the HEC-ASD model utilized GO rather than using PPI network and GRN.

Funder

Ain Shams University

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3