A hybrid Stacking-SMOTE model for optimizing the prediction of autistic genes

Author:

Ismail Eman,Gad Walaa,Hashem Mohamed

Abstract

Abstract Purpose Autism spectrum disorder(ASD) is a disease associated with the neurodevelopment of the brain. The autism spectrum can be observed in early childhood, where the symptoms of the disease usually appear in children within the first year of their life. Currently, ASD can only be diagnosed based on the apparent symptoms due to the lack of information on genes related to the disease. Therefore, in this paper, we need to predict the largest number of disease-causing genes for a better diagnosis. Methods A hybrid stacking ensemble model with Synthetic Minority Oversampling TEchnique (Stack-SMOTE) is proposed to predict the genes associated with ASD. The proposed model uses the gene ontology database to measure the similarities between the genes using a hybrid gene similarity function(HGS). HGS is effective in measuring the similarity as it combines the features of information gain-based methods and graph-based methods. The proposed model solves the imbalanced ASD dataset problem using the Synthetic Minority Oversampling Technique (SMOTE), which generates synthetic data rather than duplicates the data to reduce the overfitting. Sequentially, a gradient boosting-based random forest classifier (GBBRF) is introduced as a new combination technique to enhance the prediction of ASD genes. Moreover, the GBBRF classifier combined with random forest(RF), k-nearest neighbor, support vector machine(SVM), and logistic regression(LR) to form the proposed Stacking-SMOTE model to optimize the prediction of ASD genes. Results The proposed Stacking-SMOTE model is evaluated using the Simons Foundation Autism Research Initiative (SFARI) gene database and a set of candidates ASD genes.The results of the proposed model-based SMOTE outperform other reported undersampling and oversampling techniques. Sequentially, the results of GBBRF achieve higher accuracy than using the basic classifiers. Moreover, the experimental results show that the proposed Stacking-SMOTE model outperforms the existing ASD prediction models with approximately 95.5% accuracy. Conclusion The proposed Stacking-SMOTE model demonstrates that SMOTE is effective in handling the autism imbalanced data. Sequentially, the integration between the gradient boosting and random forest classifier (GBBRF) support to build a robust stacking ensemble model(Stacking-SMOTE).

Funder

Ain Shams University

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3