Duet: SNP-assisted structural variant calling and phasing using Oxford nanopore sequencing

Author:

Zhou Yekai,Leung Amy Wing-Sze,Ahmed Syed Shakeel,Lam Tak-Wah,Luo RuibangORCID

Abstract

Abstract Background Whole genome sequencing using the long-read Oxford Nanopore Technologies (ONT) MinION sequencer provides a cost-effective option for structural variant (SV) detection in clinical applications. Despite the advantage of using long reads, however, accurate SV calling and phasing are still challenging. Results We introduce Duet, an SV detection tool optimized for SV calling and phasing using ONT data. The tool uses novel features integrated from both SV signatures and single-nucleotide polymorphism signatures, which can accurately distinguish SV haplotype from a false signal. Duet was benchmarked against state-of-the-art tools on multiple ONT sequencing datasets of sequencing coverage ranging from 8× to 40×. At low sequencing coverage of 8×, Duet performs better than all other tools in SV calling, SV genotyping and SV phasing. When the sequencing coverage is higher (20× to 40×), the F1-score for SV phasing is further improved in comparison to the performance of other tools, while its performance of SV genotyping and SV calling remains higher than other tools. Conclusion Duet can perform accurate SV calling, SV genotyping and SV phasing using low-coverage ONT data, making it very useful for low-coverage genomes. It has great performance when scaled to high-coverage genomes, which is adaptable to various clinical applications. Duet is open source and is available at https://github.com/yekaizhou/duet.

Funder

Hong Kong Research Grants Council grants GRF

URC fund at HKU

General Program of the Shenzhen Municipal Government

Oxford Nanopore Technologies

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3