OGRE: calculate, visualize, and analyze overlap between genomic input regions and public annotations

Author:

Berres Sven,Gromoll Jörg,Wöste Marius,Sandmann Sarah,Laurentino SandraORCID

Abstract

Abstract Background Modern genome sequencing leads to an ever-growing collection of genomic annotations. Combining these elements with a set of input regions (e.g. genes) would yield new insights in genomic associations, such as those involved in gene regulation. The required data are scattered across different databases making a manual approach tiresome, unpractical, and prone to error. Semi-automatic approaches require programming skills in data parsing, processing, overlap calculation, and visualization, which most biomedical researchers lack. Our aim was to develop an automated tool providing all necessary algorithms, benefiting both bioinformaticians and researchers without bioinformatic training. Results We developed overlapping annotated genomic regions (OGRE) as a comprehensive tool to associate and visualize input regions with genomic annotations. It does so by parsing regions of interest, mining publicly available annotations, and calculating possible overlaps between them. The user can thus identify location, type, and number of associated regulatory elements. Results are presented as easy to understand visualizations and result tables. We applied OGRE to recent studies and could show high reproducibility and potential new insights. To demonstrate OGRE’s performance in terms of running time and output, we have conducted a benchmark and compared its features with similar tools. Conclusions OGRE’s functions and built-in annotations can be applied as a downstream overlap association step, which is compatible with most genomic sequencing outputs, and can thus enrich pre-existing analyses pipelines. Compared to similar tools, OGRE shows competitive performance, offers additional features, and has been successfully applied to two recent studies. Overall, OGRE addresses the lack of tools for automatic analysis, local genomic overlap calculation, and visualization by providing an easy to use, end-to-end solution for both biologists and computational scientists.

Funder

Deutsche Forschungsgemeinschaft

Westfälische Wilhelms-Universität Münster

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3