Predicting the artificial immunity induced by RUTI® vaccine against tuberculosis using universal immune system simulator (UISS)

Author:

Pennisi Marzio,Russo Giulia,Sgroi Giuseppe,Bonaccorso Angela,Parasiliti Palumbo Giuseppe Alessandro,Fichera Epifanio,Mitra Dipendra Kumar,Walker Kenneth B.,Cardona Pere-Joan,Amat Merce,Viceconti Marco,Pappalardo Francesco

Abstract

Abstract Background Tuberculosis (TB) represents a worldwide cause of mortality (it infects one third of the world’s population) affecting mostly developing countries, including India, and recently also developed ones due to the increased mobility of the world population and the evolution of different new bacterial strains capable to provoke multi-drug resistance phenomena. Currently, antitubercular drugs are unable to eradicate subpopulations of Mycobacterium tuberculosis (MTB) bacilli and therapeutic vaccinations have been postulated to overcome some of the critical issues related to the increase of drug-resistant forms and the difficult clinical and public health management of tuberculosis patients. The Horizon 2020 EC funded project “In Silico Trial for Tuberculosis Vaccine Development” (STriTuVaD) to support the identification of new therapeutic interventions against tuberculosis through novel in silico modelling of human immune responses to disease and vaccines, thereby drastically reduce the cost of clinical trials in this critical sector of public healthcare. Results We present the application of the Universal Immune System Simulator (UISS) computational modeling infrastructure as a disease model for TB. The model is capable to simulate the main features and dynamics of the immune system activities i.e., the artificial immunity induced by RUTI® vaccine, a polyantigenic liposomal therapeutic vaccine made of fragments of Mycobacterium tuberculosis cells (FCMtb). Based on the available data coming from phase II Clinical Trial in subjects with latent tuberculosis infection treated with RUTI® and isoniazid, we generated simulation scenarios through validated data in order to tune UISS accordingly to STriTuVaD objectives. The first case simulates the establishment of MTB latent chronic infection with some typical granuloma formation; the second scenario deals with a reactivation phase during latent chronic infection; the third represents the latent chronic disease infection scenario during RUTI® vaccine administration. Conclusions The application of this computational modeling strategy helpfully contributes to simulate those mechanisms involved in the early stages and in the progression of tuberculosis infection and to predict how specific therapeutical strategies will act in this scenario. In view of these results, UISS owns the capacity to open the door for a prompt integration of in silico methods within the pipeline of clinical trials, supporting and guiding the testing of treatments in patients affected by tuberculosis.

Funder

H2020 Societal Challenges

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference50 articles.

1. Furin J, Cox H, Pai M. Tuberculosis. Lancet. 2019;393(10181):1642–56.

2. Koch A, Mizrahi V. Mycobacterium tuberculosis. Trends Microbiol. 2018;26(6):555–56.

3. WHO. WHO Global Tuberculosis Report 2018. 2018.

4. Central TB Division. Annual Status report of Tb India 2016, Revised National TB Control Programme. J Chem Inf Model. 2013;53:1689–99.

5. Fogel N. Tuberculosis: a disease without boundaries. Tuberculosis. 2015;95(5):527–31.

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3