Network-based method for regions with statistically frequent interchromosomal interactions at single-cell resolution

Author:

Bulathsinghalage Chanaka,Liu Lu

Abstract

Abstract Background Chromosome conformation capture-based methods, especially Hi-C, enable scientists to detect genome-wide chromatin interactions and study the spatial organization of chromatin, which plays important roles in gene expression regulation, DNA replication and repair etc. Thus, developing computational methods to unravel patterns behind the data becomes critical. Existing computational methods focus on intrachromosomal interactions and ignore interchromosomal interactions partly because there is no prior knowledge for interchromosomal interactions and the frequency of interchromosomal interactions is much lower while the search space is much larger. With the development of single-cell technologies, the advent of single-cell Hi-C makes interrogating the spatial structure of chromatin at single-cell resolution possible. It also brings a new type of frequency information, the number of single cells with chromatin interactions between two disjoint chromosome regions. Results Considering the lack of computational methods on interchromosomal interactions and the unsurprisingly frequent intrachromosomal interactions along the diagonal of a chromatin contact map, we propose a computational method dedicated to analyzing interchromosomal interactions of single-cell Hi-C with this new frequency information. To the best of our knowledge, our proposed tool is the first to identify regions with statistically frequent interchromosomal interactions at single-cell resolution. We demonstrate that the tool utilizing networks and binomial statistical tests can identify interesting structural regions through visualization, comparison and enrichment analysis and it also supports different configurations to provide users with flexibility. Conclusions It will be a useful tool for analyzing single-cell Hi-C interchromosomal interactions.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3