FLARE: a fast and flexible workflow for identifying RNA editing foci
-
Published:2023-10-02
Issue:1
Volume:24
Page:
-
ISSN:1471-2105
-
Container-title:BMC Bioinformatics
-
language:en
-
Short-container-title:BMC Bioinformatics
Author:
Kofman Eric, Yee Brian, Medina-Munoz Hugo C., Yeo Gene W.ORCID
Abstract
Abstract
Background
Fusion of RNA-binding proteins (RBPs) to RNA base-editing enzymes (such as APOBEC1 or ADAR) has emerged as a powerful tool for the discovery of RBP binding sites. However, current methods that analyze sequencing data from RNA-base editing experiments are vulnerable to false positives due to off-target editing, genetic variation and sequencing errors.
Results
We present FLagging Areas of RNA-editing Enrichment (FLARE), a Snakemake-based pipeline that builds on the outputs of the SAILOR edit site discovery tool to identify regions statistically enriched for RNA editing. FLARE can be configured to analyze any type of RNA editing, including C to U and A to I. We applied FLARE to C-to-U editing data from a RBFOX2-APOBEC1 STAMP experiment, to show that our approach attains high specificity for detecting RBFOX2 binding sites. We also applied FLARE to detect regions of exogenously introduced as well as endogenous A-to-I editing.
Conclusions
FLARE is a fast and flexible workflow that identifies significantly edited regions from RNA-seq data. The FLARE codebase is available at https://github.com/YeoLab/FLARE.
Funder
National Science Foundation National Institutes of Health National Human Genome Research Institute
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference25 articles.
1. Bazak L, Haviv A, Barak M, Jacob-Hirsch J, Deng P, Zhang R, Isaacs FJ, Rechavi G, Li JB, Eisenberg E, Levanon EY. A-to-I RNA editing occurs at over a hundred million genomic sites, located in a majority of human genes. Genome Res. 2014;24(3):365–76. https://doi.org/10.1101/gr.164749.113. (Epub 2013 Dec 17). 2. Begg BE, Jens M, Wang PY, Minor CM, Burge CB. Concentration-dependent splicing is enabled by Rbfox motifs of intermediate affinity. Nat Struct Mol Biol. 2020;27(10):901–12. https://doi.org/10.1038/s41594-020-0475-8. (Epub 2020 Aug 17). 3. Brannan KW, Chaim IA, Marina RJ, Yee BA, Kofman ER, Lorenz DA, Jagannatha P, Dong KD, Madrigal AA, Underwood JG, Yeo GW. Robust single-cell discovery of RNA targets of RNA-binding proteins and ribosomes. Nat Methods. 2021;18(5):507–19. https://doi.org/10.1038/s41592-021-01128-0. (Epub 2021 May 7). 4. Deffit SN, Yee BA, Manning AC, Rajendren S, Vadlamani P, Wheeler EC, Domissy A, Washburn MC, Yeo GW, Hundley HA. The C. elegans neural editome reveals an ADAR target mRNA required for proper chemotaxis. Elife. 2017;6:e28625. https://doi.org/10.7554/eLife.28625. 5. Frankish A, Diekhans M, Ferreira AM, Johnson R, Jungreis I, Loveland J, Mudge JM, Sisu C, Wright J, Armstrong J, Barnes I, Berry A, Bignell A, Carbonell Sala S, Chrast J, Cunningham F, Di Domenico T, Donaldson S, Fiddes IT, García Girón C, Gonzalez JM, Grego T, Hardy M, Hourlier T, Hunt T, Izuogu OG, Lagarde J, Martin FJ, Martínez L, Mohanan S, Muir P, Navarro FCP, Parker A, Pei B, Pozo F, Ruffier M, Schmitt BM, Stapleton E, Suner MM, Sycheva I, Uszczynska-Ratajczak B, Xu J, Yates A, Zerbino D, Zhang Y, Aken B, Choudhary JS, Gerstein M, Guigó R, Hubbard TJP, Kellis M, Paten B, Reymond A, Tress ML, Flicek P. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 2019;47(D1):D766–73. https://doi.org/10.1093/nar/gky955.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|