SimuSCoP: reliably simulate Illumina sequencing data based on position and context dependent profiles

Author:

Yu ZhenhuaORCID,Du Fang,Ban Rongjun,Zhang Yuanwei

Abstract

Abstract Background A number of simulators have been developed for emulating next-generation sequencing data by incorporating known errors such as base substitutions and indels. However, their practicality may be degraded by functional and runtime limitations. Particularly, the positional and genomic contextual information is not effectively utilized for reliably characterizing base substitution patterns, as well as the positional and contextual difference of Phred quality scores is not fully investigated. Thus, a more effective and efficient bioinformatics tool is sorely required. Results Here, we introduce a novel tool, SimuSCoP, to reliably emulate complex DNA sequencing data. The base substitution patterns and the statistical behavior of quality scores in Illumina sequencing data are fully explored and integrated into the simulation model for reliably emulating datasets for different applications. In addition, an integrated and easy-to-use pipeline is employed in SimuSCoP to facilitate end-to-end simulation of complex samples, and high runtime efficiency is achieved by implementing the tool to run in multithreading with low memory consumption. These features enable SimuSCoP to gets substantial improvements in reliability, functionality, practicality and runtime efficiency. The tool is comprehensively evaluated in multiple aspects including consistency of profiles, simulation of genomic variations and complex tumor samples, and the results demonstrate the advantages of SimuSCoP over existing tools. Conclusions SimuSCoP, a new bioinformatics tool is developed to learn informative profiles from real sequencing data and reliably mimic complex data by introducing various genomic variations. We believe that the presented work will catalyse new development of downstream bioinformatics methods for analyzing sequencing data.

Funder

National Natural Science Foundation of China

Science and Technique Research Foundation of Ningxia Institutions of Higher Education

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3