Abstract
Abstract
Background
HIV/AIDS is responsible for the deaths of one million people every year. Although mathematical modeling has provided many insights into the dynamics of HIV infection, there is still a lack of accessible tools for researchers unfamiliar with modeling techniques to apply them to their own clinical data.
Results
Here we present , a free and open-source R package that models the decline of HIV during antiretroviral treatment (ART) using a popular mathematical framework. can be applied to longitudinal data of viral load measurements, and provides processing tools to prepare it for computational analysis. By mathematically fitting the data, important biological parameters can then be estimated, including the lifespans of short and long-lived infected cells, and the time to reach viral suppression below a defined detection threshold. The package also provides visualization and summary tools for fast assessment of model results.
Conclusions
enables researchers without a strong mathematical or computational background to model the dynamics of HIV using longitudinal clinical data. Increasing accessibility to such methods may facilitate quantitative analysis across a broader range of independent studies, so that greater insights on HIV infection and treatment dynamics may be gained.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献