Abstract
Abstract
Background
Non-negative matrix factorization (NMF) is a technique widely used in various fields, including artificial intelligence (AI), signal processing and bioinformatics. However existing algorithms and R packages cannot be applied to large matrices due to their slow convergence or to matrices with missing entries. Besides, most NMF research focuses only on blind decompositions: decomposition without utilizing prior knowledge. Finally, the lack of well-validated methodology for choosing the rank hyperparameters also raises concern on derived results.
Results
We adopt the idea of sequential coordinate-wise descent to NMF to increase the convergence rate. We demonstrate that NMF can handle missing values naturally and this property leads to a novel method to determine the rank hyperparameter. Further, we demonstrate some novel applications of NMF and show how to use masking to inject prior knowledge and desirable properties to achieve a more meaningful decomposition.
Conclusions
We show through complexity analysis and experiments that our implementation converges faster than well-known methods. We also show that using NMF for tumour content deconvolution can achieve results similar to existing methods like ISOpure. Our proposed missing value imputation is more accurate than conventional methods like multiple imputation and comparable to missForest while achieving significantly better computational efficiency. Finally, we argue that the suggested rank tuning method based on missing value imputation is theoretically superior to existing methods. All algorithms are implemented in the R package NNLM, which is freely available on CRAN and Github.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference17 articles.
1. Lee DD, Seung HS. Learning the parts of objects by non-negative matrix factorization. Nature. 1999; 401:899–91.
2. Brunet J-P, Tamayo P, Golub TR, Mesirov JP. Metagenes and molecular pattern discovery using matrix factorization. Proc Natl Acad Sci USA. 2007; 101(12):4164–89.
3. Kim H, Park H. Sparse non-negative matrix factorizations via alternating non-negative-constrained least squares for microarray data analysis. Bioinformatics. 2007; 23(12):1495–502.
4. Alexandrov LB, Nik-Zainal S, Wedge DC, Campbell PJ, Stratton MR. Deciphering signatures of mutational processes operative in human cancer. Nat Genet. 2013; 3:246–59.
5. Franc V, Navara M, Hlavac V. Sequential Coordinate-wise algorithm for non-negative least squares problem. Comput Anal Images Patterns. 2005; 3691:407–414.
Cited by
67 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献