A new method based on generative adversarial networks for multivariate time series prediction

Author:

Qin Xiwen1,Shi Hongyu1ORCID,Dong Xiaogang1,Zhang Siqi1

Affiliation:

1. School of Mathematics and Statistics Changchun University of Technology Changchun China

Abstract

AbstractMultivariate time series have more complex and high‐dimensional characteristics, which makes it difficult to analyze and predict the data accurately. In this paper, a new multivariate time series prediction method is proposed. This method is a generative adversarial networks (GAN) method based on Fourier transform and bi‐directional gated recurrent unit (Bi‐GRU). First, the Fourier transform is utilized to extend the data features, which helps the GAN to better learn the distributional features of the original data. Second, in order to guide the model to fully learn the distribution of the original time series data, Bi‐GRU is introduced as the generator of GAN. To solve the problems of mode collapse and gradient vanishing that exist in GAN, Wasserstein distance is used as the loss function of GAN. Finally, the proposed method is used for the prediction of air quality, stock price and RMB exchange rate. The experimental results show that the model can effectively predict the trend of the time series compared with the other nine baseline models. It significantly improves the accuracy and flexibility of multivariate time series forecasting and provides new ideas and methods for accurate time series forecasting in industrial, financial and environmental fields.

Funder

National Natural Science Foundation of China

Department of Science and Technology of Jilin Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3