Abstract
Abstract
Background
RNA-seq has become a standard technology to quantify mRNA. The measured values usually vary by several orders of magnitude, and while the detection of differences at high values is statistically well grounded, the significance of the differences for rare mRNAs can be weakened by the presence of biological and technical noise.
Results
We have developed a method for cleaning RNA-seq data, which improves the detection of differentially expressed genes and specifically genes with low to moderate transcription. Using a data modeling approach, parameters of randomly distributed mRNA counts are identified and reads, most probably originating from technical noise, are removed. We demonstrate that the removal of this random component leads to the significant increase in the number of detected differentially expressed genes, more significant pvalues and no bias towards low-count genes.
Conclusion
Application of RNAdeNoise to our RNA-seq data on polysome profiling and several published RNA-seq datasets reveals its suitability for different organisms and sequencing technologies such as Illumina and BGI, shows improved detection of differentially expressed genes, and excludes the subjective setting of thresholds for minimal RNA counts. The program, RNA-seq data, resulted gene lists and examples of use are in the supplementary data and at https://github.com/Deyneko/RNAdeNoise.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献