AMPDeep: hemolytic activity prediction of antimicrobial peptides using transfer learning

Author:

Salem Milad,Keshavarzi Arshadi Arash,Yuan Jiann Shiun

Abstract

Abstract Background Deep learning’s automatic feature extraction has proven to give superior performance in many sequence classification tasks. However, deep learning models generally require a massive amount of data to train, which in the case of Hemolytic Activity Prediction of Antimicrobial Peptides creates a challenge due to the small amount of available data. Results Three different datasets for hemolysis activity prediction of therapeutic and antimicrobial peptides are gathered and the AMPDeep pipeline is implemented for each. The result demonstrate that AMPDeep outperforms the previous works on all three datasets, including works that use physicochemical features to represent the peptides or those who solely rely on the sequence and use deep learning to learn representation for the peptides. Moreover, a combined dataset is introduced for hemolytic activity prediction to address the problem of sequence similarity in this domain. AMPDeep fine-tunes a large transformer based model on a small amount of peptides and successfully leverages the patterns learned from other protein and peptide databases to assist hemolysis activity prediction modeling. Conclusions In this work transfer learning is leveraged to overcome the challenge of small data and a deep learning based model is successfully adopted for hemolysis activity classification of antimicrobial peptides. This model is first initialized as a protein language model which is pre-trained on masked amino acid prediction on many unlabeled protein sequences in a self-supervised manner. Having done so, the model is fine-tuned on an aggregated dataset of labeled peptides in a supervised manner to predict secretion. Through transfer learning, hyper-parameter optimization and selective fine-tuning, AMPDeep is able to achieve state-of-the-art performance on three hemolysis datasets using only the sequence of the peptides. This work assists the adoption of large sequence-based models for peptide classification and modeling tasks in a practical manner.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3