Machine learning-guided discovery and design of non-hemolytic peptides

Author:

Plisson Fabien,Ramírez-Sánchez Obed,Martínez-Hernández Cristina

Abstract

AbstractReducing hurdles to clinical trials without compromising the therapeutic promises of peptide candidates becomes an essential step in peptide-based drug design. Machine-learning models are cost-effective and time-saving strategies used to predict biological activities from primary sequences. Their limitations lie in the diversity of peptide sequences and biological information within these models. Additional outlier detection methods are needed to set the boundaries for reliable predictions; the applicability domain. Antimicrobial peptides (AMPs) constitute an extensive library of peptides offering promising avenues against antibiotic-resistant infections. Most AMPs present in clinical trials are administrated topically due to their hemolytic toxicity. Here we developed machine learning models and outlier detection methods that ensure robust predictions for the discovery of AMPs and the design of novel peptides with reduced hemolytic activity. Our best models, gradient boosting classifiers, predicted the hemolytic nature from any peptide sequence with 95–97% accuracy. Nearly 70% of AMPs were predicted as hemolytic peptides. Applying multivariate outlier detection models, we found that 273 AMPs (~ 9%) could not be predicted reliably. Our combined approach led to the discovery of 34 high-confidence non-hemolytic natural AMPs, the de novo design of 507 non-hemolytic peptides, and the guidelines for non-hemolytic peptide design.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3