Robust optimization of convolutional neural networks with a uniform experiment design method: a case of phonocardiogram testing in patients with heart diseases

Author:

Ho Wen-Hsien,Huang Tian-Hsiang,Yang Po-Yuan,Chou Jyh-Horng,Qu Jin-Yi,Chang Po-Chih,Chou Fu-I.ORCID,Tsai Jinn-Tsong

Abstract

Abstract Background Heart sound measurement is crucial for analyzing and diagnosing patients with heart diseases. This study employed phonocardiogram signals as the input signal for heart disease analysis due to the accessibility of the respective method. This study referenced preprocessing techniques proposed by other researchers for the conversion of phonocardiogram signals into characteristic images composed using frequency subband. Image recognition was then conducted through the use of convolutional neural networks (CNNs), in order to classify the predicted of phonocardiogram signals as normal or abnormal. However, CNN requires the tuning of multiple hyperparameters, which entails an optimization problem for the hyperparameters in the model. To maximize CNN robustness, the uniform experiment design method and a science-based methodical experiment design were used to optimize CNN hyperparameters in this study. Results An artificial intelligence prediction model was constructed using CNN, and the uniform experiment design method was proposed to acquire hyperparameters for optimal CNN robustness. The results indicate Filters ($${X}_{1}$$ X 1 ), Stride ($${X}_{3}$$ X 3 ), Activation functions ($${X}_{6}$$ X 6 ), and Dropout ($${X}_{7}$$ X 7 ) to be significant factors considerably influencing the ability of CNN to distinguish among heart sound states. Finally, the confirmation experiment was conducted, and the hyperparameter combination for optimal model robustness was Filters ($${X}_{1}$$ X 1 ) = 32, Kernel Size ($${X}_{2})$$ X 2 ) = 3 × 3, Stride ($${X}_{3}$$ X 3 ) = (1,1), Padding ($${X}_{4})$$ X 4 ) as same, Optimizer ($${X}_{5})$$ X 5 ) as the stochastic gradient descent, Activation functions ($${X}_{6}$$ X 6 ) as relu, and Dropout ($${X}_{7}$$ X 7 ) = 0.544. With this combination of parameters, the model had an average prediction accuracy rate of 0.787 and standard deviation of 0. Conclusion In this study, phonocardiogram signals were used for the early prediction of heart diseases. The science-based and methodical uniform experiment design was used for the optimization of CNN hyperparameters to construct a CNN with optimal robustness. The results revealed that the constructed model exhibited robustness and an acceptable accuracy rate. Other literature has failed to address hyperparameter optimization problems in CNN; a method is subsequently proposed for robust CNN optimization, thereby solving this problem.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Reference20 articles.

1. Schmidt SE, Toft E, Holst-Hansen C, Graff C, Struijk JJ. Segmentation of heart sound recordings from an electronic stethoscope by a duration dependent hidden-Markov model. Comput Cardiol. 2008;35:345–8.

2. Springer DB, Tarassenko L, Clifford GD. Logistic regression-HSMM-based heart sound segmentation. IEEE Trans Biomed Eng. 2016;63:822–32.

3. Liu C, Springer D, Meyer J, Clifford GD. Performance of an open-source heart sound segmentation algorithm on eight independent databases. Physiol Meas. 2017;38:1730–45.

4. Messer SR, Agzarian J, Abbott D. Optimal wavelet denoising for phonocardiograms. Microelectron J. 2001;32:931–41.

5. Scully CG, Lee J, Meyer J, Gorbach AM, Granquist-Fraser D, Mendelson Y, Chon KH. Physiological parameter monitoring from optical recordings with a mobile phone. IEEE Trans Biomed Eng. 2012;59:303–6.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3