Nonnegative matrix factorization analysis and multiple machine learning methods identified IL17C and ACOXL as novel diagnostic biomarkers for atherosclerosis

Author:

Rao Li,Peng Bo,Li Tao

Abstract

Abstract Background Atherosclerosis is the common pathological basis for many cardiovascular and cerebrovascular diseases. The purpose of this study is to identify the diagnostic biomarkers related to atherosclerosis through machine learning algorithm. Methods Clinicopathological parameters and transcriptomics data were obtained from 4 datasets (GSE21545, GSE20129, GSE43292, GSE100927). A nonnegative matrix factorization algorithm was used to classify arteriosclerosis patients in GSE21545 dataset. Then, we identified prognosis-related differentially expressed genes (DEGs) between the subtypes. Multiple machine learning methods to detect pivotal markers. Discrimination, calibration and clinical usefulness of the predicting model were assessed using area under curve, calibration plot and decision curve analysis respectively. The expression level of the feature genes was validated in GSE20129, GSE43292, GSE100927. Results 2 molecular subtypes of atherosclerosis was identified, and 223 prognosis-related DEGs between the 2 subtypes were identified. These genes are not only related to epithelial cell proliferation, mitochondrial dysfunction, but also to immune related pathways. Least absolute shrinkage and selection operator, random forest, support vector machine- recursive feature elimination show that IL17C and ACOXL were identified as diagnostic markers of atherosclerosis. The prediction model displayed good discrimination and good calibration. Decision curve analysis showed that this model was clinically useful. Moreover, IL17C and ACOXL were verified in other 3 GEO datasets, and also have good predictive performance. Conclusion IL17C and ACOXL were diagnostic genes of atherosclerosis and associated with higher incidence of ischemic events.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3