Characterization and validation of fatty acid metabolism‐related genes predicting prognosis, immune infiltration, and drug sensitivity in endometrial cancer

Author:

Li Haojia1ORCID,Zhou Ting1,Zhang Qi1,Yao Yuwei1,Hua Teng1,Zhang Jun1,Wang Hongbo12

Affiliation:

1. Department of Obstetrics and Gynecology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan Hubei China

2. Clinical Research Center of Cancer Immunotherapy Wuhan Hubei China

Abstract

AbstractEndometrial cancer is considered to be the second most common tumor of the female reproductive system, and patients diagnosed with advanced endometrial cancer have a poor prognosis. The influence of fatty acid metabolism in the prognosis of patients with endometrial cancer remains unclear. We constructed a prognostic risk model using transcriptome sequencing data of endometrial cancer and clinical information of patients from The Cancer Genome Atlas (TCGA) database via least absolute shrinkage and selection operator regression analysis. The tumor immune microenvironment was analyzed using the CIBERSORT algorithm, followed by functional analysis and immunotherapy efficacy prediction by gene set variation analysis. The role of model genes in regulating endometrial cancer in vitro was verified by CCK‐8, colony formation, wound healing, and transabdominal invasion assays, and verified in vivo by subcutaneous tumor transplantation in nude mice. A prognostic model containing 14 genes was constructed and validated in 3 cohorts and clinical samples. The results showed differences in the infiltration of immune cells between the high‐risk and low‐risk groups, and that the high‐risk group may respond better to immunotherapy. Experiments in vitro confirmed that knockdown of epoxide hydrolase 2 (EPHX2) and acyl‐CoA oxidase like (ACOXL) had an inhibitory effect on EC cells, as did overexpression of hematopoietic prostaglandin D synthase (HPGDS). The same results were obtained in experiments in vivo. Prognostic models related to fatty acid metabolism can be used for the risk assessment of endometrial cancer patients. Experiments in vitro and in vivo confirmed that the key genes HPGDS, EPHX2, and ACOXL in the prognostic model may affect the development of endometrial cancer.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3