Incorporating mutational heterogeneity to identify genes that are enriched for synonymous mutations in cancer

Author:

Rao Yiyun,Ahmed Nabeel,Pritchard Justin,O’Brien Edward P.

Abstract

Abstract Background Synonymous mutations, which change the DNA sequence but not the encoded protein sequence, can affect protein structure and function, mRNA maturation, and mRNA half-lives. The possibility that synonymous mutations might be enriched in cancer has been explored in several recent studies. However, none of these studies control for all three types of mutational heterogeneity (patient, histology, and gene) that are known to affect the accurate identification of non-synonymous cancer-associated genes. Our goal is to adopt the current standard for non-synonymous mutations in an investigation of synonymous mutations. Results Here, we create an algorithm, MutSigCVsyn, an adaptation of MutSigCV, to identify cancer-associated genes that are enriched for synonymous mutations based on a non-coding background model that takes into account the mutational heterogeneity across these levels. Using MutSigCVsyn, we first analyzed 2572 cancer whole-genome samples from the Pan-cancer Analysis of Whole Genomes (PCAWG) to identify non-synonymous cancer drivers as a quality control. Indicative of the algorithm accuracy we find that 58.6% of these candidate genes were also found in Cancer Census Gene (CGC) list, and 66.2% were found within the PCAWG cancer driver list. We then applied it to identify 30 putative cancer-associated genes that are enriched for synonymous mutations within the same samples. One of the promising gene candidates is the B cell lymphoma 2 (BCL-2) gene. BCL-2 regulates apoptosis by antagonizing the action of proapoptotic BCL-2 family member proteins. The synonymous mutations in BCL2 are enriched in its anti-apoptotic domain and likely play a role in cancer cell proliferation. Conclusion Our study introduces MutSigCVsyn, an algorithm that accounts for mutational heterogeneity at patient, histology, and gene levels, to identify cancer-associated genes that are enriched for synonymous mutations using whole genome sequencing data. We identified 30 putative candidate genes that will benefit from future experimental studies on the role of synonymous mutations in cancer biology.

Funder

National Institute of Biomedical Imaging and Bioengineering

National Institutes of Health

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3