Abstract
Abstract
Background
In the last decade, a large number of common variants underlying complex diseases have been identified through genome-wide association studies (GWASs). Summary data of the GWASs are freely and publicly available. The summary data is usually obtained through single marker analysis. Gene-based analysis offers a useful alternative and complement to single marker analysis. Results from gene level association tests can be more readily integrated with downstream functional and pathogenic investigations. Most existing gene-based methods fall into two categories: burden tests and quadratic tests. Burden tests are usually powerful when the directions of effects of causal variants are the same. However, they may suffer loss of statistical power when different directions of effects exist at the causal variants. The power of quadratic tests is not affected by the directions of effects but could be less powerful due to issues such as the large number of degree of freedoms. These drawbacks of existing gene based methods motivated us to develop a new powerful method to identify disease associated genes using existing GWAS summary data.
Methods and Results
In this paper, we propose a new truncated statistic method (TS) by utilizing a truncated method to find the genes that have a true contribution to the genetic association. Extensive simulation studies demonstrate that our proposed test outperforms other comparable tests. We applied TS and other comparable methods to the schizophrenia GWAS data and type 2 diabetes (T2D) GWAS meta-analysis summary data. TS identified more disease associated genes than comparable methods. Many of the significant genes identified by TS may have important mechanisms relevant to the associated traits. TS is implemented in C program TS, which is freely and publicly available online.
Conclusions
The proposed truncated statistic outperforms existing methods. It can be employed to detect novel traits associated genes using GWAS summary data.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference43 articles.
1. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, Cho JH, et al.Finding the missing heritability of complex diseases. Nature. 2009; 461(7265):747.
2. Wu MC, Kraft P, Epstein MP, Taylor DM, Chanock SJ, Hunter DJ, Lin X. Powerful SNP-set analysis for case-control genome-wide association studies. Am J Hum Genet. 2010; 86(6):929–42.
3. Madsen BE, Browning SR. A groupwise association test for rare mutations using a weighted sum statistic. PLoS Genet. 2009; 5(2):e1000384.
4. Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet. 2011; 89(1):82–93.
5. Pan W. Relationship between genomic distance-based regression and kernel machine regression for multi-marker association testing. Genet Epidemiol. 2011; 35(4):211–6.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献