A gene based combination test using GWAS summary data

Author:

Zhang Jianjun,Liang Xiaoyu,Gonzales Samantha,Liu Jianguo,Gao Xiaoyi Raymond,Wang Xuexia

Abstract

AbstractBackgroundGene-based association tests provide a useful alternative and complement to the usual single marker association tests, especially in genome-wide association studies (GWAS). The way of weighting for variants in a gene plays an important role in boosting the power of a gene-based association test. Appropriate weights can boost statistical power, especially when detecting genetic variants with weak effects on a trait. One major limitation of existing gene-based association tests lies in using weights that are predetermined biologically or empirically. This limitation often attenuates the power of a test. On another hand, effect sizes or directions of causal genetic variants in real data are usually unknown, driving a need for a flexible yet robust methodology of gene based association tests. Furthermore, access to individual-level data is often limited, while thousands of GWAS summary data are publicly and freely available.ResultsTo resolve these limitations, we propose a combination test named as OWC which is based on summary statistics from GWAS data. Several traditional methods including burden test, weighted sum of squared score test [SSU], weighted sum statistic [WSS], SNP-set Kernel Association Test [SKAT], and the score test are special cases of OWC. To evaluate the performance of OWC, we perform extensive simulation studies. Results of simulation studies demonstrate that OWC outperforms several existing popular methods. We further show that OWC outperforms comparison methods in real-world data analyses using schizophrenia GWAS summary data and a fasting glucose GWAS meta-analysis data. The proposed method is implemented in an R package available athttps://github.com/Xuexia-Wang/OWC-R-packageConclusionsWe propose a novel gene-based association test that incorporates four different weighting schemes (two constant weights and two weights proportional to normal statisticZ) and includes several popular methods as its special cases. Results of the simulation studies and real data analyses illustrate that the proposed test, OWC, outperforms comparable methods in most scenarios. These results demonstrate that OWC is a useful tool that adapts to the underlying biological model for a disease by weighting appropriately genetic variants and combination of well-known gene-based tests.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3