Prediction of new associations between ncRNAs and diseases exploiting multi-type hierarchical clustering

Author:

Barracchia Emanuele PioORCID,Pio GianvitoORCID,D’Elia DomenicaORCID,Ceci MichelangeloORCID

Abstract

Abstract Background The study of functional associations between ncRNAs and human diseases is a pivotal task of modern research to develop new and more effective therapeutic approaches. Nevertheless, it is not a trivial task since it involves entities of different types, such as microRNAs, lncRNAs or target genes whose expression also depends on endogenous or exogenous factors. Such a complexity can be faced by representing the involved biological entities and their relationships as a network and by exploiting network-based computational approaches able to identify new associations. However, existing methods are limited to homogeneous networks (i.e., consisting of only one type of objects and relationships) or can exploit only a small subset of the features of biological entities, such as the presence of a particular binding domain, enzymatic properties or their involvement in specific diseases. Results To overcome the limitations of existing approaches, we propose the system LP-HCLUS, which exploits a multi-type hierarchical clustering method to predict possibly unknown ncRNA-disease relationships. In particular, LP-HCLUS analyzes heterogeneous networks consisting of several types of objects and relationships, each possibly described by a set of features, and extracts multi-type clusters that are subsequently exploited to predict new ncRNA-disease associations. The extracted clusters are overlapping, hierarchically organized, involve entities of different types, and allow LP-HCLUS to catch multiple roles of ncRNAs in diseases at different levels of granularity. Our experimental evaluation, performed on heterogeneous attributed networks consisting of microRNAs, lncRNAs, diseases, genes and their known relationships, shows that LP-HCLUS is able to obtain better results with respect to existing approaches. The biological relevance of the obtained results was evaluated according to both quantitative (i.e., TPR@k, Areas Under the TPR@k, ROC and Precision-Recall curves) and qualitative (i.e., according to the consultation of the existing literature) criteria. Conclusions The obtained results prove the utility of LP-HCLUS to conduct robust predictive studies on the biological role of ncRNAs in human diseases. The produced predictions can therefore be reliably considered as new, previously unknown, relationships among ncRNAs and diseases.

Funder

FP7 Information and Communication Technologies

Ministero dell?Istruzione, dell?Universit? e della Ricerca

Consiglio Nazionale delle Ricerche

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3