Author:
Xie Xuping,Wang Yan,He Kai,Sheng Nan
Abstract
Abstract
Background
With the development of biotechnology and the accumulation of theories, many studies have found that microRNAs (miRNAs) play an important role in various diseases. Uncovering the potential associations between miRNAs and diseases is helpful to better understand the pathogenesis of complex diseases. However, traditional biological experiments are expensive and time-consuming. Therefore, it is necessary to develop more efficient computational methods for exploring underlying disease-related miRNAs.
Results
In this paper, we present a new computational method based on positive point-wise mutual information (PPMI) and attention network to predict miRNA-disease associations (MDAs), called PATMDA. Firstly, we construct the heterogeneous MDA network and multiple similarity networks of miRNAs and diseases. Secondly, we respectively perform random walk with restart and PPMI on different similarity network views to get multi-order proximity features and then obtain high-order proximity representations of miRNAs and diseases by applying the convolutional neural network to fuse the learned proximity features. Then, we design an attention network with neural aggregation to integrate the representations of a node and its heterogeneous neighbor nodes according to the MDA network. Finally, an inner product decoder is adopted to calculate the relationship scores between miRNAs and diseases.
Conclusions
PATMDA achieves superior performance over the six state-of-the-art methods with the area under the receiver operating characteristic curve of 0.933 and 0.946 on the HMDD v2.0 and HMDD v3.2 datasets, respectively. The case studies further demonstrate the validity of PATMDA for discovering novel disease-associated miRNAs.
Funder
National Natural Science Foundation of China
the Development Project of Jilin Province of China
National Key R&D Program
the Jilin Provincial Key Laboratory of Big Data Intelligent Cognition
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献