MetaVelvet-DL: a MetaVelvet deep learning extension for de novo metagenome assembly

Author:

Liang Kuo-chingORCID,Sakakibara Yasubumi

Abstract

Abstract Background The increasing use of whole metagenome sequencing has spurred the need to improve de novo assemblers to facilitate the discovery of unknown species and the analysis of their genomic functions. MetaVelvet-SL is a short-read de novo metagenome assembler that partitions a multi-species de Bruijn graph into single-species sub-graphs. This study aimed to improve the performance of MetaVelvet-SL by using a deep learning-based model to predict the partition nodes in a multi-species de Bruijn graph. Results This study showed that the recent advances in deep learning offer the opportunity to better exploit sequence information and differentiate genomes of different species in a metagenomic sample. We developed an extension to MetaVelvet-SL, which we named MetaVelvet-DL, that builds an end-to-end architecture using Convolutional Neural Network and Long Short-Term Memory units. The deep learning model in MetaVelvet-DL can more accurately predict how to partition a de Bruijn graph than the Support Vector Machine-based model in MetaVelvet-SL can. Assembly of the Critical Assessment of Metagenome Interpretation (CAMI) dataset showed that after removing chimeric assemblies, MetaVelvet-DL produced longer single-species contigs, with less misassembled contigs than MetaVelvet-SL did. Conclusions MetaVelvet-DL provides more accurate de novo assemblies of whole metagenome data. The authors believe that this improvement can help in furthering the understanding of microbiomes by providing a more accurate description of the metagenomic samples under analysis.

Funder

Japan Agency for Medical Research and Development / JSPS KAKENHI

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3