1. Garla VN, Brandt C. Semantic similarity in the biomedical domain: an evaluation across knowledge sources. BMC Bioinformatics. 2012;13:261.
2. Le Q, Mikolov T. Distributed representations of sentences and documents. In: International conference on machine learning; 2014. p. 1188–96.
http://proceedings.mlr.press/v32/le14.html
.
3. Turian J, Ratinov L, Bengio Y. Word representations: a simple and general method for semi-supervised learning. In: Proceedings of the 48th annual meeting of the Association for Computational Linguistics. Stroudsburg: Association for Computational Linguistics; 2010. p. 384–94.
http://dl.acm.org/citation.cfm?id=1858681.1858721
.
4. Pennington J, Socher R, Manning C. Glove: Global vectors for word representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP): Association for Computational Linguistics; 2014. p. 1532–43.
https://doi.org/10.3115/v1/D14-1162.
5. Pagliardini M, Gupta P, Jaggi M. Unsupervised Learning of Sentence Embeddings using Compositional n-Gram Features. In: Proc 2018 Conf north am chapter Assoc Comput linguist hum Lang Technol Vol 1 long pap; 2018. p. 528–40.