Sentence embedding approach using LSTM auto-encoder for discussion threads summarization

Author:

Khan Abdul1,Al-Obeidat Feras2,Khalid Afsheen1,Amin Adnan1,Moreira Fernando3

Affiliation:

1. Center for Excellence in Information Technology,Institute of Management Sciences, Peshawar, Pakistan

2. College of Technological Innovation, Zayed University, Abu Dhabi, UA

3. REMIT, IJP, Universidade Portucalense IEETA, Universidade de Aveiro, Portugal

Abstract

Online discussion forums are repositories of valuable information where users interact and articulate their ideas and opinions, and share experiences about numerous topics. These online discussion forums are internet-based online communities where users can ask for help and find the solution to a problem. A new user of online discussion forums becomes exhausted from reading the significant number of irrelevant replies in a discussion. An automated discussion thread summarizing system (DTS) is necessary to create a candid view of the entire discussion of a query. Most of the previous approaches for automated DTS use the continuous bag of words (CBOW) model as a sentence embedding tool, which is poor at capturing the overall meaning of the sentence and is unable to grasp word dependency. To overcome these limitations, we introduce the LSTM Auto-encoder as a sentence embedding technique to improve the performance of DTS. The empirical result in the context of the proposed approach?s average precision, recall, and F-measure with respect to ROGUE-1 and ROUGE-2 of two standard experimental datasets demonstrates the effectiveness and efficiency of the proposed approach and outperforms the state-of-the-art CBOWmodel in sentence embedding tasks and boost the performance of the automated DTS model.

Publisher

National Library of Serbia

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3