MCMSeq: Bayesian hierarchical modeling of clustered and repeated measures RNA sequencing experiments

Author:

Vestal Brian E.,Moore Camille M.,Wynn Elizabeth,Saba Laura,Fingerlin Tasha,Kechris Katerina

Abstract

Abstract Background As the barriers to incorporating RNA sequencing (RNA-Seq) into biomedical studies continue to decrease, the complexity and size of RNA-Seq experiments are rapidly growing. Paired, longitudinal, and other correlated designs are becoming commonplace, and these studies offer immense potential for understanding how transcriptional changes within an individual over time differ depending on treatment or environmental conditions. While several methods have been proposed for dealing with repeated measures within RNA-Seq analyses, they are either restricted to handling only paired measurements, can only test for differences between two groups, and/or have issues with maintaining nominal false positive and false discovery rates. In this work, we propose a Bayesian hierarchical negative binomial generalized linear mixed model framework that can flexibly model RNA-Seq counts from studies with arbitrarily many repeated observations, can include covariates, and also maintains nominal false positive and false discovery rates in its posterior inference. Results In simulation studies, we showed that our proposed method (MCMSeq) best combines high statistical power (i.e. sensitivity or recall) with maintenance of nominal false positive and false discovery rates compared the other available strategies, especially at the smaller sample sizes investigated. This behavior was then replicated in an application to real RNA-Seq data where MCMSeq was able to find previously reported genes associated with tuberculosis infection in a cohort with longitudinal measurements. Conclusions Failing to account for repeated measurements when analyzing RNA-Seq experiments can result in significantly inflated false positive and false discovery rates. Of the methods we investigated, whether they model RNA-Seq counts directly or worked on transformed values, the Bayesian hierarchical model implemented in the mcmseq R package (available at https://github.com/stop-pre16/mcmseq) best combined sensitivity and nominal error rate control.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3