Author:
Vestal Brian E.,Moore Camille M.,Wynn Elizabeth,Saba Laura,Fingerlin Tasha,Kechris Katerina
Abstract
Abstract
Background
As the barriers to incorporating RNA sequencing (RNA-Seq) into biomedical studies continue to decrease, the complexity and size of RNA-Seq experiments are rapidly growing. Paired, longitudinal, and other correlated designs are becoming commonplace, and these studies offer immense potential for understanding how transcriptional changes within an individual over time differ depending on treatment or environmental conditions. While several methods have been proposed for dealing with repeated measures within RNA-Seq analyses, they are either restricted to handling only paired measurements, can only test for differences between two groups, and/or have issues with maintaining nominal false positive and false discovery rates. In this work, we propose a Bayesian hierarchical negative binomial generalized linear mixed model framework that can flexibly model RNA-Seq counts from studies with arbitrarily many repeated observations, can include covariates, and also maintains nominal false positive and false discovery rates in its posterior inference.
Results
In simulation studies, we showed that our proposed method (MCMSeq) best combines high statistical power (i.e. sensitivity or recall) with maintenance of nominal false positive and false discovery rates compared the other available strategies, especially at the smaller sample sizes investigated. This behavior was then replicated in an application to real RNA-Seq data where MCMSeq was able to find previously reported genes associated with tuberculosis infection in a cohort with longitudinal measurements.
Conclusions
Failing to account for repeated measurements when analyzing RNA-Seq experiments can result in significantly inflated false positive and false discovery rates. Of the methods we investigated, whether they model RNA-Seq counts directly or worked on transformed values, the Bayesian hierarchical model implemented in the mcmseq R package (available at https://github.com/stop-pre16/mcmseq) best combined sensitivity and nominal error rate control.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference54 articles.
1. Singhania A, Verma R, Graham CM, Lee J, Tran T, Richardson M, Lecine P, Leissner P, Berry MP, Wilkinson RJ, et al. A modular transcriptional signature identifies phenotypic heterogeneity of human tuberculosis infection. Nat Commun. 2018; 9(1):2308.
2. Rosenberg BR, Depla M, Freije CA, Gaucher D, Mazouz S, Boisvert M, Bédard N, Bruneau J, Rice CM, Shoukry NH. Longitudinal transcriptomic characterization of the immune response to acute hepatitis c virus infection in patients with spontaneous viral clearance. PLoS Pathog. 2018; 14(9):1007290.
3. Cui S, Ji T, Li J, Cheng J, Qiu J. What if we ignore the random effects when analyzing rna-seq data in a multifactor experiment. SStat Appl Genet Mol Biol. 2016; 15(2):87–105.
4. Fitzmaurice GM, Laird NM, Ware JH. Applied longitudinal analysis, vol. 998. Hoboken: John Wiley & Sons; 2012.
5. McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor rna-seq experiments with respect to biological variation. Nucleic Acids Res. 2012; 40(10):4288–97.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献