Identifying Differential Methylation in Cancer Epigenetics via a Bayesian Functional Regression Model

Author:

Shokoohi Farhad1ORCID,Stephens David A.2ORCID,Greenwood Celia M. T.345ORCID

Affiliation:

1. Department of Mathematical Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA

2. Department of Mathematics and Statistics, McGill University, Montreal, QC H3A 0B9, Canada

3. Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada

4. Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada

5. Department of Epidemiology, Biostatistics & Occupational Health, McGill University, Montreal, QC H3A 1G1, Canada

Abstract

DNA methylation plays an essential role in regulating gene activity, modulating disease risk, and determining treatment response. We can obtain insight into methylation patterns at a single-nucleotide level via next-generation sequencing technologies. However, complex features inherent in the data obtained via these technologies pose challenges beyond the typical big data problems. Identifying differentially methylated cytosines (dmc) or regions is one such challenge. We have developed DMCFB, an efficient dmc identification method based on Bayesian functional regression, to tackle these challenges. Using simulations, we establish that DMCFB outperforms current methods and results in better smoothing and efficient imputation. We analyzed a dataset of patients with acute promyelocytic leukemia and control samples. With DMCFB, we discovered many new dmcs and, more importantly, exhibited enhanced consistency of differential methylation within islands and their adjacent shores. Additionally, we detected differential methylation at more of the binding sites of the fused gene involved in this cancer.

Funder

Center of Biomedical Research Excellence

University of Nevada, Las Vegas

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3