Learning to detect boundary information for brain image segmentation

Author:

Khaled Afifa,Han Jian-Jun,Ghaleb Taher A.

Abstract

AbstractMRI brain images are always of low contrast, which makes it difficult to identify to which area the information at the boundary of brain images belongs. This can make the extraction of features at the boundary more challenging, since those features can be misleading as they might mix properties of different brain regions. Hence, to alleviate such a problem, image boundary detection plays a vital role in medical image segmentation, and brain segmentation in particular, as unclear boundaries can worsen brain segmentation results. Yet, given the low quality of brain images, boundary detection in the context of brain image segmentation remains challenging. Despite the research invested to improve boundary detection and brain segmentation, these two problems were addressed independently, i.e., little attention was paid to applying boundary detection to brain segmentation tasks. Therefore, in this paper, we propose a boundary detection-based model for brain image segmentation. To this end, we first design a boundary segmentation network for detecting and segmenting images brain tissues. Then, we design a boundary information module (BIM) to distinguish boundaries from the three different brain tissues. After that, we add a boundary attention gate (BAG) to the encoder output layers of our transformer to capture more informative local details. We evaluate our proposed model on two datasets of brain tissue images, including infant and adult brains. The extensive evaluation experiments of our model show better performance (a Dice Coefficient (DC) accuracy of up to $$5.3\%$$ 5.3 % compared to the state-of-the-art models) in detecting and segmenting brain tissue images.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3