An Improved Boundary-Aware U-Net for Ore Image Semantic Segmentation

Author:

Wang Wei,Li QingORCID,Xiao Chengyong,Zhang Dezheng,Miao Lei,Wang Li

Abstract

Particle size is the most important index to reflect the crushing quality of ores, and the accuracy of particle size statistics directly affects the subsequent operation of mines. Accurate ore image segmentation is an important prerequisite to ensure the reliability of particle size statistics. However, given the diversity of the size and shape of ores, the influence of dust and light, the complex texture and shadows on the ore surface, and especially the adhesion between ores, it is difficult to segment ore images accurately, and under-segmentation can be a serious problem. The construction of a large, labeled dataset for complex and unclear conveyor belt ore images is also difficult. In response to these challenges, we propose a novel, multi-task learning network based on U-Net for ore image segmentation. To solve the problem of limited available training datasets and to improve the feature extraction ability of the model, an improved encoder based on Resnet18 is proposed. Different from the original U-Net, our model decoder includes a boundary subnetwork for boundary detection and a mask subnetwork for mask segmentation, and information of the two subnetworks is fused in a boundary mask fusion block (BMFB). The experimental results showed that the pixel accuracy, Intersection over Union (IOU) for the ore mask (IOU_M), IOU for the ore boundary (IOU_B), and error of the average statistical ore particle size (ASE) rate of our proposed model on the testing dataset were 92.07%, 86.95%, 52.32%, and 20.38%, respectively. Compared to the benchmark U-Net, the improvements were 0.65%, 1.01%, 5.78%, and 12.11% (down), respectively.

Funder

Science and Technology Innovation 2030-New Generation of Artificial Intelligence Major Projects

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference35 articles.

1. Segmentation algorithm of complex ore images based on templates transformation and reconstruction

2. Ore image segmentation algorithm based on improved watershed transform;Dong;Comput. Eng. Des.,2011

3. Ore impurities detection based on marker-watershed segmentation algorithm;Jin;Comput. Sci. Appl.,2018

4. An Improved OTSU Algorithm Using Histogram Accumulation Moment for Ore Segmentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3