Identification of Rock Fragments after Blasting by Using Deep Learning-Based Segment Anything Model
Author:
Affiliation:
1. School of Resources and Safety Engineering, Central South University, Changsha 410083, China
2. Department of Civil Engineering, Monash University, Melbourne, VIC 3800, Australia
3. CINF Engineering Co., Ltd., Changsha 410001, China
Abstract
Funder
National Natural Science Foundation of China
Publisher
MDPI AG
Link
https://www.mdpi.com/2075-163X/14/7/654/pdf
Reference59 articles.
1. Comparative study of WipFrag image analysis and Kuz-Ram empirical model in granite aggregate quarry and their application for blast fragmentation rating;Shehu;Geomech. Geoeng.,2022
2. Investigation of the rock blast fragmentation based on the specific explosive energy and in-situ block size;Sereshki;Int. J. Min. Geo-Eng.,2018
3. A review of the influence of blast fragmentation on downstream processing of metal ores;Kinyua;Min. Eng.,2022
4. Rock fragmentation prediction using an artificial neural network and support vector regression hybrid approach;Amoako;Mining,2022
5. Cunningham, C.V.B. (1983, January 22–26). The KuzRam Model for Prediction of Fragmentation from Blasting. Proceedings of the First International Symposium on Rock Fragmentation by Blasting, Lulea, Sweden.
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3