Author:
Brown Scott D.,Dreolini Lisa,Wilson Jessica F.,Balasundaram Miruna,Holt Robert A.
Abstract
Abstract
Background
Sequence verification is essential for plasmids used as critical reagents or therapeutic products. Typically, high-quality plasmid sequence is achieved through capillary-based Sanger sequencing, requiring customized sets of primers for each plasmid. This process can become expensive, particularly for applications where the validated sequence needs to be produced within a regulated and quality-controlled environment for downstream clinical research applications.
Results
Here, we describe a cost-effective and accurate plasmid sequencing and consensus generation procedure using the Oxford Nanopore Technologies’ MinION device as an alternative to capillary-based plasmid sequencing options. This procedure can verify the identity of a pure population of plasmid, either confirming it matches the known and expected sequence, or identifying mutations present in the plasmid if any exist. We use a full MinION flow cell per plasmid, maximizing available data and allowing for stringent quality filters. Pseudopairing reads for consensus base calling reduces read error rates from 5.3 to 0.53%, and our pileup consensus approach provides per-base counts and confidence scores, allowing for interpretation of the certainty of the resulting consensus sequences. For pure plasmid samples, we demonstrate 100% accuracy in the resulting consensus sequence, and the sensitivity to detect small mutations such as insertions, deletions, and single nucleotide variants. In test cases where the sequenced pool of plasmids contains subclonal templates, detection sensitivity is similar to that of traditional capillary sequencing.
Conclusions
Our pipeline can provide significant cost savings compared to outsourcing clinical-grade sequencing of plasmids, making generation of high-quality plasmid sequence for clinical sequence verification more accessible. While other long-read-based methods offer higher-throughput and less cost, our pipeline produces complete and accurate sequence verification for cases where absolute sequence accuracy is required.
Funder
British Columbia Cancer Foundation
Leon Judah Blackmore Foundation
BioCanRx network
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology
Reference29 articles.
1. FDA. Guidance for industry: considerations for plasmid DNA vaccines for infectious disease indications. 2007. https://www.fda.gov/media/73667/download. Accessed 3 Jun 2022.
2. Health Canada therapeutic products programme. Guideline for industry quality of biotechnological products : analysis of the expression construct in cells used for production of r-DNA derived protein products, ICH Topic Q5B. 2001. https://publications.gc.ca/collections/Collection/H42-2-67-19-2000E.pdf. Accessed 3 Jun 2022.
3. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 1977;74:5463–7.
4. Shapland EB, Holmes V, Reeves CD, Sorokin E, Durot M, Platt D, et al. Low-cost, high-throughput sequencing of DNA assemblies using a highly multiplexed nextera process. ACS Synth Biol. 2015;4:860–6.
5. Gallegos JE, Rogers MF, Cialek CA, Peccoud J. Rapid, robust plasmid verification by de novo assembly of short sequencing reads. Nucleic Acids Res. 2020;48:e106–e106.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献