TAMA: improved metagenomic sequence classification through meta-analysis

Author:

Sim Mikang,Lee Jongin,Lee Daehwan,Kwon Daehong,Kim JaebumORCID

Abstract

Abstract Background Microorganisms are important occupants of many different environments. Identifying the composition of microbes and estimating their abundance promote understanding of interactions of microbes in environmental samples. To understand their environments more deeply, the composition of microorganisms in environmental samples has been studied using metagenomes, which are the collections of genomes of the microorganisms. Although many tools have been developed for taxonomy analysis based on different algorithms, variability of analysis outputs of existing tools from the same input metagenome datasets is the main obstacle for many researchers in this field. Results Here, we present a novel meta-analysis tool for metagenome taxonomy analysis, called TAMA, by intelligently integrating outputs from three different taxonomy analysis tools. Using an integrated reference database, TAMA performs taxonomy assignment for input metagenome reads based on a meta-score by integrating scores of taxonomy assignment from different taxonomy classification tools. TAMA outperformed existing tools when evaluated using various benchmark datasets. It was also successfully applied to obtain relative species abundance profiles and difference in composition of microorganisms in two types of cheese metagenome and human gut metagenome. Conclusion TAMA can be easily installed and used for metagenome read classification and the prediction of relative species abundance from multiple numbers and types of metagenome read samples. TAMA can be used to more accurately uncover the composition of microorganisms in metagenome samples collected from various environments, especially when the use of a single taxonomy analysis tool is unreliable. TAMA is an open source tool, and can be downloaded at https://github.com/jkimlab/TAMA.

Funder

Konkuk University

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3