Identifying protein-protein interface via a novel multi-scale local sequence and structural representation

Author:

Guo FeiORCID,Zou Quan,Yang Guang,Wang Dan,Tang Jijun,Xu Junhai

Abstract

Abstract Background Protein-protein interaction plays a key role in a multitude of biological processes, such as signal transduction, de novo drug design, immune responses, and enzymatic activities. Gaining insights of various binding abilities can deepen our understanding of the interaction. It is of great interest to understand how proteins in a complex interact with each other. Many efficient methods have been developed for identifying protein-protein interface. Results In this paper, we obtain the local information on protein-protein interface, through multi-scale local average block and hexagon structure construction. Given a pair of proteins, we use a trained support vector regression (SVR) model to select best configurations. On Benchmark v4.0, our method achieves average Irmsd value of 3.28Å and overall Fnat value of 63%, which improves upon Irmsd of 3.89Å and Fnat of 49% for ZRANK, and Irmsd of 3.99Å and Fnat of 46% for ClusPro. On CAPRI targets, our method achieves average Irmsd value of 3.45Å and overall Fnat value of 46%, which improves upon Irmsd of 4.18Å and Fnat of 40% for ZRANK, and Irmsd of 5.12Å and Fnat of 32% for ClusPro. The success rates by our method, FRODOCK 2.0, InterEvDock and SnapDock on Benchmark v4.0 are 41.5%, 29.0%, 29.4% and 37.0%, respectively. Conclusion Experiments show that our method performs better than some state-of-the-art methods, based on the prediction quality improved in terms of CAPRI evaluation criteria. All these results demonstrate that our method is a valuable technological tool for identifying protein-protein interface.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3