HormoNet: a deep learning approach for hormone-drug interaction prediction

Author:

Emami Neda,Ferdousi Reza

Abstract

AbstractSeveral experimental evidences have shown that the human endogenous hormones can interact with drugs in many ways and affect drug efficacy. The hormone drug interactions (HDI) are essential for drug treatment and precision medicine; therefore, it is essential to understand the hormone-drug associations. Here, we present HormoNet to predict the HDI pairs and their risk level by integrating features derived from hormone and drug target proteins. To the best of our knowledge, this is one of the first attempts to employ deep learning approach for prediction of HDI prediction. Amino acid composition and pseudo amino acid composition were applied to represent target information using 30 physicochemical and conformational properties of the proteins. To handle the imbalance problem in the data, we applied synthetic minority over-sampling technique technique. Additionally, we constructed novel datasets for HDI prediction and the risk level of their interaction. HormoNet achieved high performance on our constructed hormone-drug benchmark datasets. The results provide insights into the understanding of the relationship between hormone and a drug, and indicate the potential benefit of reducing risk levels of interactions in designing more effective therapies for patients in drug treatments. Our benchmark datasets and the source codes for HormoNet are available in: https://github.com/EmamiNeda/HormoNet.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3