ANMDA: anti-noise based computational model for predicting potential miRNA-disease associations

Author:

Chen Xue-Jun,Hua Xin-Yun,Jiang Zhen-Ran

Abstract

Abstract Background A growing proportion of research has proved that microRNAs (miRNAs) can regulate the function of target genes and have close relations with various diseases. Developing computational methods to exploit more potential miRNA-disease associations can provide clues for further functional research. Results Inspired by the work of predecessors, we discover that the noise hiding in the data can affect the prediction performance and then propose an anti-noise algorithm (ANMDA) to predict potential miRNA-disease associations. Firstly, we calculate the similarity in miRNAs and diseases to construct features and obtain positive samples according to the Human MicroRNA Disease Database version 2.0 (HMDD v2.0). Then, we apply k-means on the undetected miRNA-disease associations and sample the negative examples equally from the k-cluster. Further, we construct several data subsets through sampling with replacement to feed on the light gradient boosting machine (LightGBM) method. Finally, the voting method is applied to predict potential miRNA-disease relationships. As a result, ANMDA can achieve an area under the receiver operating characteristic curve (AUROC) of 0.9373 ± 0.0005 in five-fold cross-validation, which is superior to several published methods. In addition, we analyze the predicted miRNA-disease associations with high probability and compare them with the data in HMDD v3.0 in the case study. The results show ANMDA is a novel and practical algorithm that can be used to infer potential miRNA-disease associations. Conclusion The results indicate the noise hiding in the data has an obvious impact on predicting potential miRNA-disease associations. We believe ANMDA can achieve better results from this task with more methods used in dealing with the data noise.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3