Set-theory based benchmarking of three different variant callers for targeted sequencing

Author:

Molina-Mora Jose ArturoORCID,Solano-Vargas MarielaORCID

Abstract

Abstract Background Next generation sequencing (NGS) technologies have improved the study of hereditary diseases. Since the evaluation of bioinformatics pipelines is not straightforward, NGS demands effective strategies to analyze data that is of paramount relevance for decision making under a clinical scenario. According to the benchmarking framework of the Global Alliance for Genomics and Health (GA4GH), we implemented a new simple and user-friendly set-theory based method to assess variant callers using a gold standard variant set and high confidence regions. As model, we used TruSight Cardio kit sequencing data of the reference genome NA12878. This targeted sequencing kit is used to identify variants in key genes related to Inherited Cardiac Conditions (ICCs), a group of cardiovascular diseases with high rates of morbidity and mortality. Results We implemented and compared three variant calling pipelines (Isaac, Freebayes, and VarScan). Performance metrics using our set-theory approach showed high-resolution pipelines and revealed: (1) a perfect recall of 1.000 for all three pipelines, (2) very high precision values, i.e. 0.987 for Freebayes, 0.928 for VarScan, and 1.000 for Isaac, when compared with the reference material, and (3) a ROC curve analysis with AUC > 0.94 for all cases. Moreover, significant differences were obtained between the three pipelines. In general, results indicate that the three pipelines were able to recognize the expected variants in the gold standard data set. Conclusions Our set-theory approach to calculate metrics was able to identify the expected ICCs related variants by the three selected pipelines, but results were completely dependent on the algorithms. We emphasize the importance to assess pipelines using gold standard materials to achieve the most reliable results for clinical application.

Funder

Vicerrectoría de Investigación, Universidad de Costa Rica

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3