GRAPES-DD: exploiting decision diagrams for index-driven search in biological graph databases

Author:

Licheri Nicola,Bonnici VincenzoORCID,Beccuti Marco,Giugno Rosalba

Abstract

Abstract Background Graphs are mathematical structures widely used for expressing relationships among elements when representing biomedical and biological information. On top of these representations, several analyses are performed. A common task is the search of one substructure within one graph, called target. The problem is referred to as one-to-one subgraph search, and it is known to be NP-complete. Heuristics and indexing techniques can be applied to facilitate the search. Indexing techniques are also exploited in the context of searching in a collection of target graphs, referred to as one-to-many subgraph problem. Filter-and-verification methods that use indexing approaches provide a fast pruning of target graphs or parts of them that do not contain the query. The expensive verification phase is then performed only on the subset of promising targets. Indexing strategies extract graph features at a sufficient granularity level for performing a powerful filtering step. Features are memorized in data structures allowing an efficient access. Indexing size, querying time and filtering power are key points for the development of efficient subgraph searching solutions. Results An existing approach, GRAPES, has been shown to have good performance in terms of speed-up for both one-to-one and one-to-many cases. However, it suffers in the size of the built index. For this reason, we propose GRAPES-DD, a modified version of GRAPES in which the indexing structure has been replaced with a Decision Diagram. Decision Diagrams are a broad class of data structures widely used to encode and manipulate functions efficiently. Experiments on biomedical structures and synthetic graphs have confirmed our expectation showing that GRAPES-DD has substantially reduced the memory utilization compared to GRAPES without worsening the searching time. Conclusion The use of Decision Diagrams for searching in biochemical and biological graphs is completely new and potentially promising thanks to their ability to encode compactly sets by exploiting their structure and regularity, and to manipulate entire sets of elements at once, instead of exploring each single element explicitly. Search strategies based on Decision Diagram makes the indexing for biochemical graphs, and not only, more affordable allowing us to potentially deal with huge and ever growing collections of biochemical and biological structures.

Funder

Fondazione CRT

Gruppo Nazionale per l’Analisi Matematica, la Probabilitàe le loro Applicazioni

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. When Protein Structure Embedding Meets Large Language Models;Genes;2023-12-23

2. SubTempora: A Hybrid Approach for Optimising Subgraph Searching;Communications in Computer and Information Science;2023

3. Efficient Subgraph Indexing for Biochemical Graphs;Proceedings of the 11th International Conference on Data Science, Technology and Applications;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3