Affiliation:
1. Department of Computer Science, Georgia State University, Atlanta, GA 30303, USA
Abstract
Protein structure analysis is essential in various bioinformatics domains such as drug discovery, disease diagnosis, and evolutionary studies. Within structural biology, the classification of protein structures is pivotal, employing machine learning algorithms to categorize structures based on data from databases like the Protein Data Bank (PDB). To predict protein functions, embeddings based on protein sequences have been employed. Creating numerical embeddings that preserve vital information while considering protein structure and sequence presents several challenges. The existing literature lacks a comprehensive and effective approach that combines structural and sequence-based features to achieve efficient protein classification. While large language models (LLMs) have exhibited promising outcomes for protein function prediction, their focus primarily lies on protein sequences, disregarding the 3D structures of proteins. The quality of embeddings heavily relies on how well the geometry of the embedding space aligns with the underlying data structure, posing a critical research question. Traditionally, Euclidean space has served as a widely utilized framework for embeddings. In this study, we propose a novel method for designing numerical embeddings in Euclidean space for proteins by leveraging 3D structure information, specifically employing the concept of contact maps. These embeddings are synergistically combined with features extracted from LLMs and traditional feature engineering techniques to enhance the performance of embeddings in supervised protein analysis. Experimental results on benchmark datasets, including PDB Bind and STCRDAB, demonstrate the superior performance of the proposed method for protein function prediction.
Subject
Genetics (clinical),Genetics
Reference56 articles.
1. Machine learning in protein structure prediction;AlQuraishi;Curr. Opin. Chem. Biol.,2021
2. Structure-based design of enzyme inhibitors and receptor ligands;Kubinyi;Curr. Opin. Drug Discov. Dev.,1998
3. Zou, L., Chen, L., and Lu, Y. (2007, January 9). Top-k subgraph matching query in a large graph. Proceedings of the ACM First Ph.D. Workshop in CIKM, Lisbon, Portugal.
4. Licheri, N., Amparone, E., Bonnici, V., Giugno, R., and Beccuti, M. (2021, January 1–5). An Entropy Heuristic to Optimize Decision Diagrams for Index-driven Search in Biological Graph Databases. Proceedings of the CIKM Workshops, Virtual.
5. Batool, M., Ahmad, B., and Choi, S. (2019). A structure-based drug discovery paradigm. Int. J. Mol. Sci., 20.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献