ReUseData: an R/Bioconductor tool for reusable and reproducible genomic data management

Author:

Liu Qian,Hu Qiang,Liu Song,Hutson Alan,Morgan Martin

Abstract

Abstract Background The increasing volume and complexity of genomic data pose significant challenges for effective data management and reuse. Public genomic data often undergo similar preprocessing across projects, leading to redundant or inconsistent datasets and inefficient use of computing resources. This is especially pertinent for bioinformaticians engaged in multiple projects. Tools have been created to address challenges in managing and accessing curated genomic datasets, however, the practical utility of such tools becomes especially beneficial for users who seek to work with specific types of data or are technically inclined toward a particular programming language. Currently, there exists a gap in the availability of an R-specific solution for efficient data management and versatile data reuse. Results Here we present ReUseData, an R software tool that overcomes some of the limitations of existing solutions and provides a versatile and reproducible approach to effective data management within R. ReUseData facilitates the transformation of ad hoc scripts for data preprocessing into Common Workflow Language (CWL)-based data recipes, allowing for the reproducible generation of curated data files in their generic formats. The data recipes are standardized and self-contained, enabling them to be easily portable and reproducible across various computing platforms. ReUseData also streamlines the reuse of curated data files and their integration into downstream analysis tools and workflows with different frameworks. Conclusions ReUseData provides a reliable and reproducible approach for genomic data management within the R environment to enhance the accessibility and reusability of genomic data. The package is available at Bioconductor (https://bioconductor.org/packages/ReUseData/) with additional information on the project website (https://rcwl.org/dataRecipes/).

Funder

National Center for Advancing Translational Sciences

National Cancer Institute, United States

National Human Genome Research Institute,United States

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3