AttCRISPR: a spacetime interpretable model for prediction of sgRNA on-target activity

Author:

Xiao Li-Ming,Wan Yun-Qi,Jiang Zhen-Ran

Abstract

Abstract Background More and more Cas9 variants with higher specificity are developed to avoid the off-target effect, which brings a significant volume of experimental data. Conventional machine learning performs poorly on these datasets, while the methods based on deep learning often lack interpretability, which makes researchers have to trade-off accuracy and interpretability. It is necessary to develop a method that can not only match deep learning-based methods in performance but also with good interpretability that can be comparable to conventional machine learning methods. Results To overcome these problems, we propose an intrinsically interpretable method called AttCRISPR based on deep learning to predict the on-target activity. The advantage of AttCRISPR lies in using the ensemble learning strategy to stack available encoding-based methods and embedding-based methods with strong interpretability. Comparison with the state-of-the-art methods using WT-SpCas9, eSpCas9(1.1), SpCas9-HF1 datasets, AttCRISPR can achieve an average Spearman value of 0.872, 0.867, 0.867, respectively on several public datasets, which is superior to these methods. Furthermore, benefits from two attention modules—one spatial and one temporal, AttCRISPR has good interpretability. Through these modules, we can understand the decisions made by AttCRISPR at both global and local levels without other post hoc explanations techniques. Conclusion With the trained models, we reveal the preference for each position-dependent nucleotide on the sgRNA (short guide RNA) sequence in each dataset at a global level. And at a local level, we prove that the interpretability of AttCRISPR can be used to guide the researchers to design sgRNA with higher activity.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3